skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roy, Deepanjali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Catalytic membranes offer opportunities to develop modular, process‐intensified units. Dual‐functional materials, which integrate reactive and separation components in a single material, could play an important role in enabling them. Adapting the various characterization tools that are used to analyze the structures of metal‐based catalysts to these integrated structures could provide vital information for their design and implementation. In this perspective, we highlight the ways in which these tools can be used to analyze nonreactive membranes and non‐integrated systems where the catalyst and the membrane operate as two separate units. A methodology developed to analyze these comparatively simpler systems could be subsequently extended to integrated dual‐functional catalytic membranes. Thus, researchers from the catalysis and membranes communities can work together in a way that will not only lead to fundamental advancements in our understanding of catalytic membranes but also enable their transformation into real, scalable process‐intensified units. 
    more » « less